Vectors

1.

In the diagram,

- $\overrightarrow{O A}=\mathbf{a}$
- $\overrightarrow{O B}=\mathbf{b}$
- $A X: X B=1: 4$
- $\overrightarrow{O Y}=5 \times \overrightarrow{O X}$

Show that $\overrightarrow{O A}$ and $\overrightarrow{B Y}$ are parallel.
2.

In the diagram,

- $\overrightarrow{O A}=\mathbf{a}$
- $\overrightarrow{O B}=\mathbf{b}$
- $\overrightarrow{B Z}=2 \mathbf{a}$
- $O X: X B=1: 5$

Find the ratio $B Y: B A$.
3.

In the diagram,

- $A B C D$ is a square.
- $\overrightarrow{O A}=\mathbf{a}$
- $\overrightarrow{O B}=\mathbf{b}$
- M is the midpoint of $B C$
- $O Y: Y B=2: 1$
- $O X: X A=1: 3$

Find the vector $\overrightarrow{O Z}$.
4.

In the diagram,

- $A B C D$ is a square.
- $\overrightarrow{O A}=\mathbf{a}$
- $\overrightarrow{O B}=\mathbf{b}$
- M is the midpoint of $B C$
- $\overrightarrow{O X}=m \times \overrightarrow{O A}$
- $\overrightarrow{O Y}=n \times \overrightarrow{O B}$

Find the vector $\overrightarrow{O Z}$, giving your answer in terms of m and n.
5. A median of a triangle is a line segment passing through a vertex and the midpoint of the opposite side. For example, in triangle $A B C$ one of the medians is the line segment between A and the midpoint of $B C$.

Using a vector method, show that the three medians of a triangle meet at a single point.
6.

In the diagram,

- $O A B C D E F G$ is a parallelepiped.
- $\overrightarrow{O A}=\mathbf{x}$
- $\overrightarrow{O C}=\mathbf{y}$
- $\overrightarrow{O D}=\mathbf{z}$
- M is the midpoint of $B C$
- Y is the midpoint of $O A$
- $\overrightarrow{D X}=k \times \overrightarrow{D G}$

Show that, for every $0<k<1$, the lines $X Y$ and $M D$ intersect. If the point of intersection is Z, find the vector $\overrightarrow{O Z}$, giving your answer in terms of k.

1. $\overrightarrow{O X}=\mathbf{a}+\frac{1}{5}(-\mathbf{a}+\mathbf{b})=\frac{4}{5} \mathbf{a}+\frac{1}{5} \mathbf{b}$. So, $\overrightarrow{O Y}=5 \times \overrightarrow{O X}=4 \mathbf{a}+\mathbf{b}$. Then $\overrightarrow{B Y}=\overrightarrow{B O}+\overrightarrow{O Y}=-\mathbf{b}+4 \mathbf{a}+\mathbf{b}=4 \mathbf{a}=4 \times \overrightarrow{O A}$. So $\overrightarrow{O A}$ and $\overrightarrow{B Y}$ are parallel.
2. $\overrightarrow{B Y}=\lambda \overrightarrow{B A}=\lambda(-\mathbf{b}+\mathbf{a})$.

Also, $\overrightarrow{B Y}=\overrightarrow{B X}+\mu \overrightarrow{X Z}=-\frac{5}{6} \mathbf{b}+\mu\left(\frac{5}{6} \mathbf{b}+2 \mathbf{a}\right)$.
Equating these, $\lambda=2 \mu$ and $-\lambda=-\frac{5}{6}+\frac{5}{6} \mu$, giving us $\lambda=\frac{10}{17}$. So $B Y: B A=10: 7$.
3. $\overrightarrow{O Z}=\overrightarrow{O X}+\lambda \overrightarrow{X Z}=\frac{1}{4} \mathbf{a}+\lambda\left(-\frac{1}{4} \mathbf{a}+\mathbf{b}+\frac{1}{2} \mathbf{a}\right)=\frac{1}{4} \mathbf{a}+\lambda\left(\frac{1}{4} \mathbf{a}+\mathbf{b}\right)$.

Also, $\overrightarrow{O Z}=\overrightarrow{O Y}+\mu \overrightarrow{Y A}=\frac{2}{3} \mathbf{b}+\mu\left(-\frac{2}{3} \mathbf{b}+\mathbf{a}\right)$.
Equating these, $\frac{1}{4}-\frac{1}{4} \lambda=\mu$ and $\lambda=\frac{2}{3}-\frac{2}{3} \mu$, giving us $\lambda=\frac{3}{7}$, and so $\overrightarrow{O Z}=\frac{1}{4} \mathbf{a}+\frac{3}{7}\left(\frac{1}{4} \mathbf{a}+\mathbf{b}\right)=\frac{5}{14} \mathbf{a}+\frac{3}{7} \mathbf{b}$.
4. Using a similar method to before, we obtain $\overrightarrow{O Z}=\mathbf{a}(m-\lambda m+0.5 \lambda)+\lambda \mathbf{b}$ and also $\overrightarrow{O Z}=\mu \mathbf{a}+(n-\mu n) \mathbf{b}$. Equating and solving simultaneously, we get

$$
\mu=\frac{n-2 m n+2 m}{n-2 n m+2}
$$

and so

$$
\overrightarrow{O Z}=n \mathbf{b}+\frac{n-2 m n+2 m}{n-2 n m+2}(-n \mathbf{b}+\mathbf{a})=\frac{n-2 m n+2 m}{n-2 n m+2} \mathbf{a}+\frac{n(2-2 m)}{n-2 n m+2} \mathbf{b}
$$

5. Suppose the triangle has vertices $O A B$ with $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$. Define the midpoint of the side opposite angle X as M_{X}. Then $\overrightarrow{O M_{O}}=\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}, \overrightarrow{A M_{A}}=-\mathbf{a}+\frac{1}{2} \mathbf{b}, \overrightarrow{B M_{B}}=-\mathbf{b}+\frac{1}{2} A$.
Suppose the lines $A M_{A}$ and $B M_{B}$ meet at the point X. Then $\overrightarrow{O X}=\overrightarrow{O A}+\lambda \overrightarrow{A M_{A}}=\mathbf{a}+\lambda\left(-\mathbf{a}+\frac{1}{2} \mathbf{b}\right)$. But also $\overrightarrow{O X}=$ $\overrightarrow{O B}+\mu \overrightarrow{B M_{B}}=\mathbf{b}+\mu\left(-\mathbf{b}+\frac{1}{2} \mathbf{a}\right)$. Equating these, we obtain $\lambda=\mu=\frac{2}{3}$. Then $\overrightarrow{O X}=\frac{1}{3} \mathbf{a}+\frac{1}{3} \mathbf{b}=\frac{2}{3} \overrightarrow{O M_{\mathrm{O}}}$, so X lies on $O M, O$, as required.
6. $\overrightarrow{O Z}=\frac{k}{2(1+k)} \mathbf{x}+\frac{1}{1+k} \mathbf{y}+\frac{1}{1+k} \mathbf{z}$.
