Vectors

In the diagram,

- $\overrightarrow{OA} = \mathbf{a}$
- $\overrightarrow{OB} = \mathbf{b}$
- AX: XB = 1:4
- $\overrightarrow{OY} = 5 \times \overrightarrow{OX}$

Show that \overrightarrow{OA} and \overrightarrow{BY} are parallel.

2.

In the diagram,

- $\overrightarrow{OA} = \mathbf{a}$
- $\overrightarrow{OB} = \mathbf{b}$
- $\overrightarrow{BZ} = 2\mathbf{a}$
- OX: XB = 1:5

Find the ratio *BY* : *BA*.

In the diagram,

- *ABCD* is a square.
- $\overrightarrow{OA} = \mathbf{a}$
- $\overrightarrow{OB} = \mathbf{b}$
- *M* is the midpoint of *BC*
- OY: YB = 2:1
- OX : XA = 1 : 3

Find the vector \overrightarrow{OZ} .

4.

In the diagram,

• *ABCD* is a square.

- $\overrightarrow{OA} = \mathbf{a}$
- $\overrightarrow{OB} = \mathbf{b}$
- *M* is the midpoint of *BC*
- $\overrightarrow{OX} = m \times \overrightarrow{OA}$
- $\overrightarrow{OY} = n \times \overrightarrow{OB}$

Find the vector \overrightarrow{OZ} , giving your answer in terms of *m* and *n*.

5. A **median** of a triangle is a line segment passing through a vertex and the midpoint of the opposite side. For example, in triangle *ABC* one of the medians is the line segment between *A* and the midpoint of *BC*.

Using a vector method, show that the three medians of a triangle meet at a single point.

6.

In the diagram,

- *OABCDEFG* is a parallelepiped.
- $\overrightarrow{OA} = \mathbf{x}$
- $\overrightarrow{OC} = \mathbf{y}$
- $\overrightarrow{OD} = \mathbf{z}$
- *M* is the midpoint of *BC*
- *Y* is the midpoint of *OA*
- $\overrightarrow{DX} = k \times \overrightarrow{DG}$

Show that, for every 0 < k < 1, the lines *XY* and *MD* intersect. If the point of intersection is *Z*, find the vector \overrightarrow{OZ} , giving your answer in terms of *k*.

1. $\overrightarrow{OX} = \mathbf{a} + \frac{1}{5}(-\mathbf{a} + \mathbf{b}) = \frac{4}{5}\mathbf{a} + \frac{1}{5}\mathbf{b}$. So, $\overrightarrow{OY} = 5 \times \overrightarrow{OX} = 4\mathbf{a} + \mathbf{b}$. Then $\overrightarrow{BY} = \overrightarrow{BO} + \overrightarrow{OY} = -\mathbf{b} + 4\mathbf{a} + \mathbf{b} = 4\mathbf{a} = 4 \times \overrightarrow{OA}$. So \overrightarrow{OA} and \overrightarrow{BY} are parallel. **2.** $\overrightarrow{BY} = \lambda \overrightarrow{BA} = \lambda (-\mathbf{b} + \mathbf{a}).$ Also, $\overrightarrow{BY} = \overrightarrow{BX} + \mu \overrightarrow{XZ} = -\frac{5}{6}\mathbf{b} + \mu \left(\frac{5}{6}\mathbf{b} + 2\mathbf{a}\right).$ Equating these, $\lambda = 2\mu$ and $-\lambda = -\frac{5}{6} + \frac{5}{6}\mu$, giving us $\lambda = \frac{10}{17}$. So BY : BA = 10:7. 3. $\overrightarrow{OZ} = \overrightarrow{OX} + \lambda \overrightarrow{XZ} = \frac{1}{4}\mathbf{a} + \lambda \left(-\frac{1}{4}\mathbf{a} + \mathbf{b} + \frac{1}{2}\mathbf{a}\right) = \frac{1}{4}\mathbf{a} + \lambda \left(\frac{1}{4}\mathbf{a} + \mathbf{b}\right).$ Also, $\overrightarrow{OZ} = \overrightarrow{OY} + \mu \overrightarrow{YA} = \frac{2}{3}\mathbf{b} + \mu \left(-\frac{2}{3}\mathbf{b} + \mathbf{a}\right).$ Equating these, $\frac{1}{4} - \frac{1}{4}\lambda = \mu$ and $\lambda = \frac{2}{3} - \frac{2}{3}\mu$, giving us $\lambda = \frac{3}{7}$, and so $\overrightarrow{OZ} = \frac{1}{4}\mathbf{a} + \frac{3}{7}\left(\frac{1}{4}\mathbf{a} + \mathbf{b}\right) = \frac{5}{14}\mathbf{a} + \frac{3}{7}\mathbf{b}$. **4.** Using a similar method to before, we obtain $\overrightarrow{OZ} = \mathbf{a}(m - \lambda m + 0.5\lambda) + \lambda \mathbf{b}$ and also $\overrightarrow{OZ} = \mu \mathbf{a} + (n - \mu n)\mathbf{b}$. Equating

and solving simultaneously, we get

$$\mu = \frac{n - 2mn + 2m}{n - 2nm + 2}$$

and so

$$\overrightarrow{OZ} = n\mathbf{b} + \frac{n-2mn+2m}{n-2nm+2}\left(-n\mathbf{b} + \mathbf{a}\right) = \frac{n-2mn+2m}{n-2nm+2}\mathbf{a} + \frac{n(2-2m)}{n-2nm+2}\mathbf{b}$$

5. Suppose the triangle has vertices *OAB* with $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. Define the midpoint of the side opposite angle *X* as M_X . Then $\overrightarrow{OM_O} = \frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$, $\overrightarrow{AM_A} = -\mathbf{a} + \frac{1}{2}\mathbf{b}$, $\overrightarrow{BM_B} = -\mathbf{b} + \frac{1}{2}A$.

Suppose the lines AM_A and BM_B meet at the point X. Then $\overrightarrow{OX} = \overrightarrow{OA} + \lambda \overrightarrow{AM_A} = \mathbf{a} + \lambda(-\mathbf{a} + \frac{1}{2}\mathbf{b})$. But also $\overrightarrow{OX} = \overrightarrow{OB} + \mu \overrightarrow{BM_B} = \mathbf{b} + \mu(-\mathbf{b} + \frac{1}{2}\mathbf{a})$. Equating these, we obtain $\lambda = \mu = \frac{2}{3}$. Then $\overrightarrow{OX} = \frac{1}{3}\mathbf{a} + \frac{1}{3}\mathbf{b} = \frac{2}{3}\overrightarrow{OM_O}$, so X lies on OM_{O} , as required. 6. $\overrightarrow{OZ} = \frac{k}{2(1+k)}\mathbf{x} + \frac{1}{1+k}\mathbf{y} + \frac{1}{1+k}\mathbf{z}$.