Recurring Decimals Questions

In each question, the variables x and y represent a single digit from 1 to 9. Give all your answers in their lowest terms.

- 1. Convert $0. \dot{x}$ to a fraction.
- 2. Convert $0.3\dot{x}$ to a fraction.
- 3. Convert $0. x \dot{5}$ to a fraction.
- 4. Convert $0.\dot{7}\dot{x}$ to a fraction.
- 5. Convert $0. \dot{x} \dot{y}$ to a fraction.
- 6. Work out $0. \dot{x} \dot{y} 0. \dot{y} \dot{x}$, giving your answer as a fraction.
- 7. $0.\dot{x}\dot{y} 0.\dot{y}\dot{x} = 0.\dot{5}\dot{4}$. How many possible pairs of values of x and y are there?
- 8. The fraction $\frac{1}{n}$, where *n* is a positive integer, is converted to a decimal. What values of *n* will give a terminating decimal? [Hint use your calculator to try various values of *n*]
- 9. How many fractions of the form $\frac{1}{n}$, where *n* is an integer such that $1 \le n \le 30$, give a terminating decimal?
- 10. Giving your answer as a fraction, work out the value of

$$\frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \frac{1}{10000} + \cdots$$

Fill in each box in the table with either "always recurring", "always terminating", or "sometimes recurring, sometimes terminating". Provide an example for each case.

a	b	$a \times b$	a+b	$a \div b$
Dec. and a	Description			
Recurring	Recurring			
Recurring	Terminating			
Terminating	Terminating			

1.
$$\frac{x}{9}$$

2. $\frac{27+x}{90}$
3. $\frac{9x+5}{90}$
4. $\frac{70+x}{99}$
5. $\frac{10x+y}{99}$
6. $\frac{x-y}{11}$
7. $0.\dot{5}\dot{4} = \frac{6}{11}$, so $x - y = 6$. There are 3 such pairs for $1 \le x, y \le 9$
8. We only get a terminating decimal when the only prime factors of *n* are 2 and/or 5
9. 9 values (1, 2, 4, 5, 8, 10, 16, 20, 25)

 $10.\frac{1}{9}$

a	b	$a \times b$	<i>a</i> + <i>b</i>	$a \div b$
Recurring	Recurring	Sometimes	Sometimes	Sometimes
		recurring,	recurring,	recurring,
		sometimes	sometimes	sometimes
		terminating	terminating	terminating
Recurring	Terminating	Sometimes	Always	Sometimes
		recurring,	recurring	recurring,
		sometimes		sometimes
		terminating		terminating
Terminating	Terminating	Always	Always	Sometimes
		terminating	terminating	recurring,
				sometimes
				terminating