Probability and Venn Diagrams

For each question, use the statements to construct a 2 or 3 set Venn diagram, with the probabilities for all regions filled in.

Question 1

 $P(A \cup B) = 0.6$ P(A) = P(B) $P(A \cap B) = 0.3$

Question 2

A and B are mutually exclusive.

 $P(A \cup B) = 0.8$ $P(A) = 3 \times P(B)$

Question 3

 $P(A) = \frac{1}{2}P(B)$ $P(A \cap B) = P(A \cap B')$ $P(A' \cap B') = 0$

Question 4

 $P(A) + P(B) + P(A' \cap B') = 1.5$ P(B) - P(A) = 0.1 $P(A \cup B) = 0.8$

Question 5

A and B are mutually exclusive. A and C are mutually exclusive.

 $P(A' \cap B' \cap C') = 0.2$ $P(A) = \frac{1}{3} \times P(B \cup C)$ P(B) = P(C) $P(B) + P(C) - P(B \cup C) = 0.1$

Question 6

 $B \subset A$ B and C are mutually exclusive. $P(A) = 2 \times P(B)$ $P(A \cap C') = \frac{3}{4} \times P(A)$ $P(C) = \frac{1}{3}$ $P(A' \cap B' \cap C') = P(A \cap C)$

Question 7

 $B \subset A, C \subset A$ B and C are mutually exclusive. $P(A) - P(B) - P(C) = \frac{2}{15}$ $P(C) = P(A' \cap B' \cap C')$ $P(B) = \frac{7}{3} \times P(C)$

Question 8

A, B, and C are all mutually exclusive. $7 \times P(A) + 3 \times P(B) + P(C) = 3.4$ $4 \times P(A) - P(B) + 2 \times P(C) = 1$ $P(A) + 3 \times P(B) + 3 \times P(C) = 1.8$

Question 1

Question 2

Question 3

Question 4

Question 5

Question 6

Question 7

Question 8

