Core Pure Extra Practice Paper 2

1.

$$
\begin{gathered}
z_{1}=1-i \\
z_{2}=3 \sqrt{3}+3 i
\end{gathered}
$$

a) Find the values of
i) $\arg \left(z_{1}\right)$
ii) $\arg \left(z_{2}\right)$
iii) $\arg \left(z_{1} z_{2}\right)$
b) Find the value of $\left|z_{1}+z_{2}\right|$, giving your answer in the form $\sqrt{a+b \sqrt{c}}$, where a, b, and c are integers.
2.

$$
M=\left(\begin{array}{lll}
1 & 5 & p \\
q & 1 & 4 \\
0 & 0 & 1
\end{array}\right)
$$

a) Find the values of p and q for which the matrix M has an inverse.
b) Given that M has an inverse, find M^{-1} in terms of p and q.
c) Write down the determinant of M^{-1}, giving your answer in terms of p and/or q.
d) The matrix M represents the linear transformation A.

Given that,

- The determinant of M is positive,
- Under A, a cube with side length 2 is mapped to a shape with volume 48 units 3,
- $(8,-4,2)$ is an invariant point of the transformation,

Find the values of p and q.
3.

The curve C has equation

$$
y=5 \cosh x \sinh x-12 \cosh 2 x
$$

a) Find the x coordinate of the stationary point A of C, giving your answer exactly in terms of natural logarithms.
b) Show that A is a maximum turning point.
4.
a) Express

$$
\frac{1-2 x}{x^{4}-2 x^{3}+x^{2}}
$$

in partial fractions.
(4)
b) Hence show that

$$
\sum_{r=k+1}^{n} \frac{2 r-1}{r^{4}-2 r^{3}+r^{2}}=\frac{n^{2}-k^{2}}{n^{2} k^{2}}
$$

c) Find the least value of n such that

$$
\sum_{r=6}^{n} \frac{2 r-1}{r^{4}-2 r^{3}+r^{2}}>0.039
$$

5.

i) Sketch the polar curve $r=e^{-\theta}$ for $0 \leq \theta<2 \pi$
ii) Find the points on the curve where the tangents are perpendicular to the initial line. Give your answers correct to three significant figures.
6.

The diagram shows the curve $x^{2}\left(1+(y-2)^{2}\right)=1$ for $x \geq 0,0 \leq y \leq 3$.
a) Find the volume of the solid generated when the curve is rotated 2π radians around the y axis, giving your answer to three significant figures.
b) Find the area enclosed by the curve, the y axis, the x axis, and the line $y=3$, giving your answer in the form $\ln \frac{a+\sqrt{b}}{c+\sqrt{d}}$.
7.

In an argand diagram, $A B C D E F$ is a regular hexagon centred at the origin, where $A=\sqrt{3}+i$.
The locus of points z satisfying $|z|=|z-\sqrt{3}-i|$ divides the hexagon into two regions.
Find the ratio of the area of the larger region to the area of the smaller region.
8.

Two planes are defined by

$$
\begin{gathered}
\Pi_{1}:-5 x+6 y+z=-52 \\
\Pi_{2}: 3 x-4 y+2 z=24
\end{gathered}
$$

a) Find the acute angle between Π_{1} and Π_{2}, giving your answer to one decimal place.
b) Find a vector equation of l, the line of intersection of the two planes.
c) The point A lies on l. Find the coordinates of A when the distance from A to the origin is minimised.

9.

The displacement of a particle from a fixed origin is modelled by the differential equation

$$
\frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+9 x=-4 e^{-3 t}
$$

a) Find the general solution of the displacement of the particle at time t.
b) Initially, the particle has displacement $\frac{5}{3}$ and is stationary.

Find the other time when the particle is stationary.
c) Find

$$
\int_{0}^{\infty} x d t
$$

